Pointwise multipliers for reverse Holder spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POINTWISE MULTIPLIERS FOR REVERSE HÖLDER SPACES II By

We classify weights which map strong reverse Hölder weight classes to weak reverse Hölder weight spaces under pointwise multiplication.

متن کامل

Smooth pointwise multipliers of modulation spaces

Let 1 < p, q < ∞ and s, r ∈ R. It is proved that any function in the amalgam space W (H p′(R ), l∞), where p ′ is the conjugate exponent to p and H p′(R ) is the Bessel potential space, defines a bounded pointwise multiplication operator in the modulation space M p,q(R ), whenever r > |s|+ d.

متن کامل

Non-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces

We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...

متن کامل

Atomic representations in function spaces and applications to pointwise multipliers and diffeomorphisms, a new approach

In Chapter 4 of [28] Triebel proved two theorems concerning pointwise multipliers and diffeomorphisms in function spaces Bp,q(R n) and Fs p,q(R n). In each case he presented two approaches, one via atoms and one via local means. While the approach via atoms was very satisfactory concerning the length and simplicity, only the rather technical approach via local means proved the theorems in full ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1994

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-109-1-23-39